
Time of Detection as a Metric for Prioritizing
Between Climate Observation Quality,
Frequency, and Duration
B. R. Carter1,2 , N. L.Williams2 ,W. Evans3 , A. J. Fassbender4 , L. Barbero5,6 , C. Hauri7,
R. A. Feely2, and A. J. Sutton2

1Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA, 2Pacific Marine
Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, USA, 3Hakai Institute,
Heriot Bay, British Columbia, Canada, 4Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA,
5Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA, 6Atlantic
Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA,
7International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA

Abstract We advance a simple framework based on “time of detection” for estimating the observational
needs of studies assessing climate changes amidst natural variability and apply it to several examples related
to ocean acidification. This approach aims to connect the Global Ocean Acidification Observing Network
“weather” and “climate” data quality thresholds with a single dynamic threshold appropriate for a range of
potential ocean signals and environments. A key implication of the framework is that measurement
frequency can be as important as measurement accuracy, particularly in highly variable environments.
Pragmatic cost‐benefit analyses based on this framework can be performed to quantitatively determine
which observing strategy will accomplish a given detection goal soonest and resolve a signal with the
greatest confidence and to assess how the trade‐offs between measurement frequency and accuracy
vary regionally.

1. Introduction

A growing body of scientific literature focuses on assessing the “time of emergence” of various climate sig-
nals or the time at which a climate signal grows to exceed a multiple of the noise in an observed or modeled
climate record. The idea has been used both to characterize how rapidly modeled climate signals become
meaningful relative to natural variability (e.g., Christian, 2014; Hawkins & Sutton, 2012; Henson et al.,
2017; Keller et al., 2014; Rodgers et al., 2015) and to determine the length of a record required for detection
of a climate signal despite natural variability and/or observational uncertainty (e.g., Carter et al., 2016; Ilyina
et al., 2009; McKinley et al., 2016;Weatherhead et al., 1998). The latter application is referred to here as “time
of detection,” and is our focus. There is also currently scientific discussion regarding what level of measure-
ment uncertainty is allowable for climate research and how requirements might differ when researching
shorter‐timescale natural phenomena (e.g., ocean weather; Newton et al., 2015). We contend that these
topics are connected by a simple, practical question: “What is needed to confidently assess whether the
Earth system is changing over a given length of time in a given region?” The answer to this question is, in
some cases, certainly “better measurements,” but other possible answers include “a longer measurement
time series,” “more frequent measurements of the system,” or even “knowledge of how much natural varia-
tion we should expect.” In this study, we present a simple approach that combines the time‐of‐detection con-
cept with measurement uncertainties into a framework that can be used to test the effectiveness of
monitoring efforts within the context of the potential answers to this question. The approach accounts for
differing timescales of variability and allows for strategies that might be used to reduce the impacts of natural
variability in the measurement record.

We first present the framework and then show how it can be applied using a handful of examples that are
related to ocean acidification (OA). While we focus on OA applications, we note that this approach could
be applied to any climate signal (e.g., warming, eutrophication, and deoxygenation). With a large number
of emerging climate signals to observe—and a large and growing number of sensor and measurement
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platform technologies being used to observe them—our vision is that this approach will provide means to
optimize the effectiveness of future observation strategies.

The framework is built around the minimum requirements for signal detection, but we caution that “good
enough for detection” is only good enough provided some common but seldom tested simplifications hold
(e.g., normally distributed uncertainties and variabilities). It is therefore advisable that one aims higher than
the minimum benchmarks provided by this framework, and we note that the more one exceeds the mini-
mum requirements by, the sooner a signal can be detected and the better the magnitude of the signal will
be constrained. Nevertheless, the minimum signal detection criterion is a convenient quantitative measure
with which different observation strategies can be compared.

2. The Framework

The framework is a restatement of the time of detection “detection at 95% confidence” criterion, with 1.96
standard deviations rounded to 2 to not overstate the precision of this approach. For detection of a difference,
the signal of interest (S, expressed as a difference from an initially or distantly measured value) must then
equal or exceed twice the noise (N, expressed as a standard deviation (e.g., Keller et al., 2014)

Sj j≥2N (1)

The units in these and all subsequent equations are flexible provided they are consistent for all terms in the
equations, and the units reflect approximately linear responses (e.g., avoid considering very large changes in
log‐space quantities such as pH). The nuance of the method is then in the estimation and interpretation of
the terms S and N and their components.

The S and N terms are estimated from a consideration of the signals of interest, the variability of the asso-
ciated systems, and the uncertainties inherent in the measurements and simplifying assumptions. For mar-
ine systems, the common component terms for S and N are measurement uncertainty (UM), daily variability
(VD), subseasonal variability (VSS), seasonal variability (VS), interannual and longer timescale natural varia-
bility (VI), long‐term change (Δ) or trend multiplied by time (T × dt), and uncertainty in any assumptions
(UA) made during data reduction. Depending on the region and question of interest, one must decide
whether each of these components is part of the signal or the noise. Once the components are partitioned
between S and N, components of the noise can be combined as the square root of the sum of their squares.
A common example in climate science is detecting the presence of a long‐term trend in a raw signal such as
seawater alkalinity. In this case the signal would equal Δ while noise would be the combination of all other
terms (e.g., Carter et al., 2016; Ilyina et al., 2009) added in quadrature

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UM

2 þ UA
2 þ VD

2 þ VSS
2 þ VS

2 þ VI
2

p
(2)

Like measurement uncertainty, natural variability is treated here as a component of the noise because it acts
to prevent detection of long‐term climate signals (Frölicher et al., 2009). However, it is sometimes practical
to make either diverse or frequent measurements frequently enough to resolve the impacts of modes of
natural variability. For example, monthly measurements from each year of a monthly time series might
be averaged together and subtracted from each monthly value prior to analyzing interannual variability,
thereby reducing the impact of VS and allowing it to be neglected. Alternately, a researcher interested in VS

(e.g., Fassbender, Alin, et al., 2018) could “detrend” monthly measurements by subtracting a linear fit to a
multiyear time series, allowing the impacts of T and the longer‐term portion of VI to be neglected (these
two terms can be challenging to distinguish from one another in short time series; see work by
Weatherhead et al. (1998) for more on this topic). However, in both cases errors in the assumption that these
approaches completely removed the impacts of the variabilities/trends must be included (asUA) in the noise
estimate. For example, UAmight equal the uncertainty on the annual mean value in the first example above
and the uncertainty on the subtracted trend line in the second. The possibility of reducing the variability by
averaging portions of a highly temporally resolved time series gives rise to an important insight for observa-
tion network design: An observation network providing a large number of moderately accurate measure-
ments may be preferable to one that provides infrequent yet highly accurate measurements, particularly
when natural variability is large compared to the measurement uncertainty. The proposed framework
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allows for quantitative comparison of the merits of the full spectrum of such possibilities using, for example,
the S to N ratio.

Two additional complications that could be (but are not here) included in the framework are evolving varia-
bility terms (e.g., a growing VS; Fassbender, Rodgers, et al., 2018) and spatial variability. Spatial variability is
an additional mode of variability that should be considered for observing platforms that can cross natural
seawater property gradients (e.g., floats, drifters, and ship measurements). For this reason, these platforms
are often implemented as arrays that partially cancel these biases using a large number of independent mea-
surements within a region. These complications are topics for the future development of this method.

The framework can be solved for many terms, each of which can be of scientific interest. For example, a
researcher curious about the maximum amount of measurement uncertainty that would still permit the
detection of a specified, long‐term change Δ (S in this case) could solve for this UM (Figure 1a) as

UM≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
2

� �2

−VT
2−VD

2−VSS
2−VS

2−VI
2−UA

2

s
(3)

Alternately, one could solve for the smallest trend (T) that could be detected for a time series of length dt
(here the S is expanded to T × dt):

Tj j≥ 2N
dt

(4)

Equations (1)–(4) are differentiable allowing them to be solved for many related relationships, for example,
the incremental impact on dt expected for a given increase in UM (supporting information Figure S1).

When rearranged to solve for dt (Figure 1b), equation (4) is one formulation for “time of emergence/
detection” (e.g., Hawkins & Sutton, 2012; Keller et al., 2014). This framework approach to time‐of‐
emergence estimation differs from the formulation of Weatherhead et al. (1998)—which is also used in
climate science (Beaulieu et al., 2013; Henson et al., 2010; Henson et al., 2018; Sutton et al., 2018)—in that
it considers timescales of variability separately and explicitly rather than inferring the net impact of all varia-
bility collectively from deseasonalized monthly time series data. Our approach has the advantage of being
applicable to a broader range of climate records but the disadvantage that it requires independent informa-
tion about the impacts of all timescales of variability. For our purposes therefore, even data sets or model
simulations that show null results of “no emergent trends” are often useful for characterizing regional varia-
bility on different timescales.

3. Example Applications

We consider example applications related to underway ship (section 3.1), mooring (4.2), and repeat hydro-
graphic cruise data (summarized in Table 1 and explained in subsequent sections).

3.1. pCO2 Trend Near Unimak Pass, Alaska

Our first example tests whether frequently repeated surface seawater pCO2 measurements (81 sets of mea-
surements in ~21 years) through Unimak Pass, a 19‐km wide and 55‐m deep waterway in the Alaskan
Aleutian Islands (Figure 2a), are sufficient to establish whether a long‐term change has emerged from the
envelope of natural variability and how large of a role measurement uncertainty has played in the ability
to detect a change there. The signal in this example is the long‐term trend T, combined with any portion
of interannual variability VI that acts on timescales comparable to or longer than the ~20‐year data record
available in version 6 of the Surface Ocean CO2 Atlas data set (see Bakker et al., 2016 for a version 3 descrip-
tion). The noise is all other modes of variability combined with a comparatively small (~2 to 5 μatm)UM. The
constraints of Unimak Pass minimize spatial variability from ship tracks, but this is nevertheless an unre-
solved additional potential contribution to the signal and noise (Figure 2a).

We use several approaches to reduce the impacts of variability on this record. First, we average all pCO2

values from each transect of Unimak Pass, keeping only data from 77 transects with at least 10 independent
pCO2 values. This averaging reduces our statistical degrees of freedom to reflect the fact that multiple
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Figure 1. A schematic representation of framework equations (3) and (4) solved for (a) the maximum measurement uncertainty (UM) that would still permit
detection of various 20‐year signals (S, x axis) and (b) the minimum trend T that would still be detected for a given unresolved noise N (y axis) after a length of
time dt (x axis). Many example calculations in section 4 are plotted as white dots labeled as indicated by the “code” in Table 1. The black areas in Figure 1a indicate
undetectable signals, and the gray area on the left of Figure 1b results from closely spaced contours (i.e., only large trends are detectable).

Table 1
Terms in All of the Various Calculations Discussed in the Examples

Code Description Units UM VD VSS VS VI UA N T (year−1) dt (year) S

Figure 1a, calculating maximum measurement uncertainty for given signal and variability
1Uni Unimak μatm x ‐ ‐ ‐ ~ ‐ 27 2.3 20 46
2Bd BATS decadal μatm x 2 8 31 4 ‐ 20 2 20 40
2Bt BATS monthly time series μatm 17 2 8 ~ 4 7 20 2 20 40
2Bf BATS float array μatm 18 2 ~ ~ 4 7 20 2 20 40
2Bm BATS mooring μatm 18 ~ ~ ~ 4 7 20 2 20 40
2Cd CCE2 decadal μatm x 15 36 33 9 ‐ 20 2 20 40
2Ct CCE2 monthly time series μatm x 15 36 ~ 9 7 20 2 20 40
2Cf CCE2 float array μatm 6 15 ~ ~ 9 8 20 2 20 40
2Cm CCE2 mooring μatm 16 ~ ~ ~ 9 8 20 2 20 40
3Canth Decadal Canth μmol kg−1 4.1 ~ ~ ~ ~ 0.55a 4.1a 0.41 20 8.2
Figure 1b, calculating minimum trend rate or length of trend with a given rate
1Uni Unimak μatm ‐ ‐ ‐ ‐ ~ ‐ 27 2.3 23 54
2Bd BATS decadal μatm 2 2 8 31 4 ‐ 32 2 32 64
2Bt BATS monthly time series μatm 2 2 8 ~ 4 9 12 2 12 18
2Bf BATS float array μatm 11 2 ~ ~ 4 8 14 2 14 24
2Bm BATS mooring μatm 2 ~ ~ ~ 4 10 10 2 10 8
2Cd CCE2 decadal μatm 2 15 36 33 9 ‐ 52 2 52 104
2Ct CCE2 monthly time series μatm 2 15 36 ~ 9 5 40 2 40 80
2Cf CCE2 float array μatm 11 15 ~ ~ 9 7 22 2 22 41
2Cm CCE2 mooring μatm 2 ~ ~ ~ 9 10 13 2 13 18
3Canth Decadal Canth μmol kg−1 ‐ ~ ~ ~ ~ ‐ 1.45a 0.15 10 ‐

Additional calculations discussed in text
Unimak float array μatm 11 ~ ~ ~ ‐ ‐ 29 2.3 25 58
Peru float array μatm 11 15 ~ ~ 66 4 66 2 66 131
Peru mooring μatm 2 ~ ~ ~ 63 4 63 2 63 126

Note. Each row is one calculation. Assumed quantities are underlined. Calculated quantities are in bold. The “code” refers to dots in Figures 1a and 1b with the
number indicating the example set. Italicized calculations fall beyond Figure 1 axis limits. “x” = signal does not exceed variability alone, so no additional UM
noise can be calculated; “‐” = not needed for calculation; see text for details; “~” = neglected, assumed small, or dealt with using simplifying assumptions.
aFrom Carter et al. (2017, Appendix B).
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measurements along brief transects do not provide independent realiza-
tions of VSS, VS, or VI or arguably ofUM or VD (with an only 2‐ to 3‐hr tran-
sit through the region at ~20 knots). AUA term is necessary to account for
uncertainty regarding our assumption that the averaged values represent
the truemean value expected along each transect. ThisUA equals the stan-
dard deviations of the individual pCO2 measurements propagated
through the averaging for each transect (Figure 2b, error bars). There
remains enough combined variability that the long‐term trend T of the
transectaveraged data (estimated using an uncertainty weighted regres-
sion) is not significant over the ~20‐year observational period
(p = 0.068, trend root‐mean‐square error [RMSE[ = 49 μatm). However,
these data still have an unknown influence from VD, VSS, and VS. Next,
an adjustment is applied to “d‐seasonalize” the data (see Bates, 2001;
Sutton et al., 2018; Takahashi et al., 2009): the average monthly pCO2

anomalies relative to the long‐term mean measured pCO2 (Figure 2c)
are interpolated to the average month of each transect and subtracted
from the transect‐mean pCO2. The observed trend after deseasonalization
is 2.3 μatm/year (p = 5×10−6; Figure 2d). The 27‐μatm RMSE of this fit is
due to the combination of unresolved VD, VSS, the portion of VI acting on
<20‐year timescales,UM, and aUA term reflecting both errors in the trans-
ect averaging and errors in the deseasonalization adjustment (the latter of
which averages ~13 μatm, estimated from the standard uncertainty on the
average monthly anomalies used for the adjustment).

Our approach allows us to calculate that it would be ~23 years from 1995
before the observed rate of change in Unimak Pass would exceed the back-
ground of deseasonalized variability (Figure 2d), so the signal should be
detectable within the next few annual releases of the Surface Ocean CO2

Atlas. This analysis demonstrates that a significant trend can be identified
even before the trend can be shown to have fully “emerged” from the
envelope of natural variability provided some of the influences of natural
variability can be averaged out with frequent measurements. However,
since we did not separately estimate VI acting on >20‐year timescales in
this example, we cannot definitively say whether such a trend owes to very
long timescale interannual variability.

We can also use equation (3) to solve for themaximumUM that would result
in trend detection within 25 years (i.e., by 2020). The framework suggests
that the signal could still be detected within 25 years had UM been as large
as ±11 μatm (Table 1) or the approximate uncertainty of surface pCO2 esti-
mates made from profiling floats equipped with pH sensors (Williams et al.,
2017). Climate quality data are therefore not required for pCO2 trend detec-
tion within 25 years in this highly variable Aleutian pass when given a time
series long and dense enough to constrain the seasonal cycle.

3.2. Measurement Timescales and Platforms

In the next example we use highly temporally resolved data and model
output to estimate all timescales of variability in the framework at two
disparate locations, thereby allowing an exploration of the interplay
between measurement frequency, measurement uncertainty, natural
variability, and signal detection in different regions. We consider surface
pCO2 variability at two locations, both of which are equipped with
moored autonomous pCO2 measurement systems (Sutton et al., 2014)
sampling at intervals of 3 hr: the Bermuda Atlantic Time Series (BATS,

Figure 2. (a) A map of Unimak Pass with pCO2 measured on transects
plotted in color. (b) Average transect pCO2 values plotted with error bars
reflecting standard uncertainties for the mean values. A linear fit of these
data reveals an insignificant trend (black line) that will not exceed twice the
noise (shaded blue area with width equaling ±2N or twice the trend line
root‐mean‐square error of 49 μatm) in the near future. (c) These data,
plotted by month of year (black dots), can be binned and averaged for each
month and shown as a monthly anomaly from the long‐term average pCO2
(red dots, with the red band indicating standard uncertainties on the
monthly mean values). When these bin average anomalies are interpolated
to the measurement months of each transect and then subtracted from the
original transect data (in b), the result is (d) deseasonalized data. Here
error bars reflect combined errors from both the transect averaging and the
deseasonalization. Panel (d) shows a significant trend (black line) that
exceeds twice the noise (shaded blue area with a width of twice the trend
line root‐mean‐square error of 27 μatm) before 2020.
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64°W, 31.5°N; Joyce & Robbins, 1996) in the oligotrophic North Atlantic subtropical gyre and a mooring in
the California Current Ecosystem (CCE2, 121.8°W, 34.324°N; plotted in supporting information S2). The
CCE2 location experiences intense variability from upwelling and biological productivity on seasonal and
subseasonal timescales, whereas the BATS location is an open ocean site with substantially less high fre-
quency variability. VD, VSS, and VS are estimated as the average moving window standard deviations of sets
of eight consecutive three‐hourly pCO2 values, 30 consecutive daily average pCO2 values, and 12 consecutive
monthly average pCO2 values, respectively. Measurement uncertainty is contributing to the observed daily
variability, so VD has the ±2 μatm UM (Sutton et al., 2014) subtracted from this average moving window
standard deviation in quadrature. We supplement these data records with fully coupled Earth system model
output from the HadGEM preindustrial control run (r1i1p1) with fixed atmospheric pCO2 (Collins et al.,
2008; supporting information S3). This affords VI estimates at these locations as the standard deviations of
annually averaged values (see Table 1).

A plausible surface ocean pCO2 increase of ~2 μatm/year (Sutton et al., 2018) would be expected to exceed
natural variability and a small UM (±2 μatm) after 26 years at BATS and after 42 years at CCE2 using dec-
adal measurements that resolve no timescales of variability. If we could eliminate all impacts of VS only, VS

and VSS only, and all three of VS, VSS, and VD, then these detection times would decrease from 26 to 9, 5,
and 4 years at BATS and from 42 to 30, 18, and 9 years at CCE2, respectively (not shown in Table 1).
Example platforms that are capable of resolving these modes of variability are monthly time series measure-
ments (Joyce & Robbins, 1996), 5‐ to 10‐day cycling profiling biogeochemical Argo floats (Johnson &
Claustre, 2016), and continuously measuring autonomous moorings (Sutton et al., 2014), respectively.
However, realistically these platforms only gradually improve their resolution of the modes of variability
as moreindependent realizations of the variability are recorded. Therefore, for the calculations in Table 1
we assess a UA equaling the eliminated modes of variability divided by the square root of the number of
realizations of each mode of variability after dt years and added in quadrature. For example, for moorings,
UA equals

UA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VD

2

365dt
þ VSS

2

12dt
þ VS

2

dt

s
(5)

We then solve for dt iteratively (an exact solution is achievable but many termed). These calculations
suggest that monthly time series data are nearly as effective as moorings (12 years to emerge with a
monthly timeseries compared to 10 years for a mooring) at BATS but would be significantly less effective
at CCE2 (40 and 13 years, respectively) due to high daily and subseasonal pCO2 variability. The moored
autonomous systems are effective in both locations due to their high sampling frequency and
measurement accuracy.

With an ±11‐μatm pCO2 uncertainty (at 400 μatm; Williams et al., 2017), the framework suggests that pro-
filing float observations would require 14 and 22 years to detect a pCO2 trend at BATS and CCE2, respec-
tively. This is longer than is required for moorings (10 and 13 years, respectively) due primarily to the
larger float‐based pCO2 uncertainty at BATS and the inability of floats to resolve daily variability at CCE2.
Floats are also less effective than time series measurements at BATS, but the reverse is true at CCE2 where
floats can detect a trend sooner by resolving subseasonal variability. While the dt required for a profiling
float at CCE2 is nearly double the requirement for a mooring, the float dt would only be 5% greater at
CCE2 had that region exhibited the much larger (±63 μatm) interannual variability seen in the upwelling
region offshore Peru in the same HadGEM simulation (Table 1, supporting information S3). The ideal mea-
surement platform therefore depends significantly on the expected magnitudes and timescales of variability.
For example, moorings are particularly effective in regions where high‐frequency variability dominates,
whereas amore cost‐effective platform that samples less frequently could be preferable in regions with larger
low‐frequency variability.

A nearly identical (~13 years) time of detection value is obtained from Weatherhead et al.'s (1998)
formulation when applied to deseasonalized monthly mooring data at CCE2 (Sutton et al., 2018, omitting
the conservative 40% dt increase that they assign to allow for potential additional unresolved
interannual variability).
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3.3. Anthropogenic Carbon Accumulation

Examples so far primarily demonstrate the importance of measurement frequency, but meeting the stringent
“climate quality” data requirements for carbonate system measurements (Newton et al., 2015) is critical for
some OAmonitoring applications. One example of this comes from inferring decadal interior ocean anthro-
pogenic carbon (Canth) storage from repeat hydrography (e.g., Carter et al., 2017; Kouketsu et al., 2013; Pardo
et al., 2014;Waters et al., 2011;Williams et al., 2015;Woosley et al., 2016). With only one synoptic “snapshot”
of ocean chemistry each decade, this observation strategy does not allow any modes of natural variability to
be directly resolved through repeated observations. However, researchers have developed means of account-
ing for the impacts of natural variability on dissolved inorganic carbon (DIC) to resolve the signal of interest.
One example approach is the extendedmultiple linear regression (eMLR) technique (Friis et al., 2005) which
uses empirical regressions relating DIC to other measured properties affected by natural variability to esti-
mate and remove the impacts of natural variability on DIC (i.e., using diverse measurements to resolve nat-
ural variability instead of frequent measurements). The eMLR method has been shown to be partially
effective (Carter et al., 2017; Clement & Gruber, 2018; Plancherel et al., 2013), and the purely methodological
error was recently estimated from simulations of model output with known Canth to average ±0.55‐μmol/kg
Canth (UA) over the 200‐ to 1,500‐m depth range where eMLR is most often applied (Carter et al., 2017).
However, this uncertainty increases to 1.45‐μmol/kg Canth when simulated measurement errors common
for “climate quality” repeat hydrographic observations are also included (i.e., UA and UM combined).
These two uncertainties are the only remaining noise terms in the framework since the variability terms
are assumed to be accounted for by eMLR.

An example Canth signal is the average Canth storage over the 200‐ to 1,500‐m depth range of the Pacific
Ocean along ~180°E (equaling 4.1‐μmol/kg Canth from 1995 to 2005 in the model simulation considered
by Carter et al., 2017, Appendix B). Measurement uncertainties increase noise from 13% (UA) to 35% (UA

andUM) of that signal and increase the time of detection from 2.7 to 7.1 years. The eMLRmethod is therefore
capable of detecting the signal with each decadal repeat, and the simulated DICmeasurement uncertainty is
the dominant source of uncertainty for the decadal Canth estimates. The significant noise contribution
from measurement uncertainties both prevents detection in (e.g., deeper) water masses with lower Canth

accumulation rates and increases the estimate uncertainty (i.e., lowers the S/N ratio) in water masses with
higher accumulation rates. The N term could therefore be directly reduced by more accurate measurements
or—as measurement uncertainties are mostly statistically independent between synoptic surveys—by more
frequent or numerous hydrographic line reoccupations to reduce the DIC trend uncertainty. At the current
rate of sampling, even the most stringent climate quality observation uncertainties limit the ability to infer
interior ocean decadal Canth distribution changes in broad swaths of ocean. Therefore, the highly accurate
“climate quality” data produced by repeated hydrographic surveys are indeed needed.

4. Conclusions

The framework is intended to quantify the trade‐offs between different observing approaches with respect to
the impacts of measurement uncertainty, frequency, and duration and to assess how the importance of these
factors depends on the potential signal magnitude and regional natural variability. However, a full consid-
eration of the best measurement approach for a climate observing challenge must involve practical concerns
not covered by the framework. Example additional considerations include measurement costs, platform
suitability for the region(s) of interest, sensor availability and viability for the signals of interest, the avail-
ability of personnel with appropriate expertise, and potential synergies with existing, planned, and past
observing efforts.

The examples we consider reveal lessons for an observing system planning exercise: (1) highly accurate
measurements are needed to resolve some, but not all, critical climate signals, and the impacts of improving
measurement confidence are quantifiable within the time‐of‐detection context; (2) emergent climate trends
can generally be identified sooner with more frequent measurements, particularly for systems that are
highly variable on shorter timescales; (3) records that do not identify emergent climate signals still provide
important constraints for future oceanographic research; and (4) the comparative merits of different obser-
ving approaches (e.g., repeat hydrography, time series, float arrays, and moorings) depend significantly on
the expected magnitudes of variabilty over a range timescales, on the uncertainties of the measurements
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produced, and on the uncertainties of the data reduction strategies applied during data workup. Broadly,
repeat hydrography can be ideal when data transformations can limit the impacts of natural variability on
climate signals, monthly time series are effective at detecing climate signals in areas with low daily and
subseasonal variability, float arrays are effective for a range of environments where broad regional trends
and patterns are of interest, and moorings can be ideal when resources can be directed at a single question
or region, especially when the region experiences high‐frequency natural variability.
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